6.3 Vectors #1

In science there are many quantities that are represented by **scalars**. A scalar is just a number/constant representing a quantity. Scalars can describe volume or mass of an object. They can also describe length or area.

There are some quantities that require more information for a complete description. For example, displacement and forces acting on objects need not only a measure of magnitude, but also a direction in which the magnitude is applied. For this we need **vectors**.

Here is a vector. A vector is often described as a directed line segment. Actually, a vector is a *set* of directed line segments all having the same magnitude and direction.

The **magnitude** of a vector is written as $\|\overrightarrow{AB}\|$

Example 1

Let **u** be represented by the directed line segment from P=(0,0) to Q=(3,1), and let **v** be represented by the directed line segment from R=(2,2) to S=(5,3).

Show that u=v.

Component Form of a Vector

The component form of a vector \mathbf{v} is written as $\langle v_1, v_2 \rangle$ and specifies the horizontal directed distance v_1 and the vertical directed distance v_2 necessary to travel from the initial point to the terminal point.

In order to determine the component form of a vector with initial point (p_1,p_2) and terminal point (q_1,q_2) , simply subtract the corresponding "x and y values." This is essentially calculating slope, but writing the change in y and change in x separately.

$$\langle v_1, v_2 \rangle = \langle q_1 - p_1, q_2 - p_2 \rangle$$

Magnitude is calculated using the Pythagorean Theorem (or distance formula for two points).

$$\|v\| = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2} = \sqrt{v_1^2 + v_2^2}$$

 Traditional Distance Formula Magnitude written with vector with two points version of magnitude.

Example 2

Find the component form and magnitude of the vector \mathbf{v} that has the intial point (-2,3) and terminal point (-7,9).

Example 3

Find the component form and magnitude of the vector \mathbf{v} that has the intial point (2,-4) and terminal point (5,7).

Note: A **unit vector** has a magnitude of 1 and the **zero vector** has magnitude equal to zero.

Operations on Vectors

The most basic operations on vectors consist of addition and scalar multiplication.

- 1. $\mathbf{u} + \mathbf{v} = \underline{\mathbf{v} + \mathbf{u}}$
- 2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \underline{\mathbf{u} + (\mathbf{v} + \mathbf{w})}$
- 3. $\mathbf{u} + \mathbf{0} = \underline{\mathbf{u}}$
- 4. $\mathbf{u} + (-\mathbf{u}) = \underline{\mathbf{0}}$
- 5. $c(d\mathbf{u}) = \underline{\qquad (cd)\mathbf{u}}$

- 6. $(c+d)\mathbf{u} = \underline{c\mathbf{u} + d\mathbf{u}}$
- 7. $c(\mathbf{u} + \mathbf{v}) = \underline{c\mathbf{u} + c\mathbf{v}}$
- 8. $1(\mathbf{u}) = \underline{\mathbf{u}}$
- 9. $0(\mathbf{u}) = \underline{0}$
- 10. $\|c\mathbf{v}\| = \frac{\|c\| \|\mathbf{v}\|}{\|c\| \|c\|}$

Vector Addition Definition

Scalar Multiplication Definition

If
$$u=\left\langle u_{1},u_{2}\right\rangle$$
 and $v=\left\langle v_{1},v_{2}\right\rangle$

then
$$u+v=\left\langle u_1+v_1,u_2+v_2\right\rangle$$

If k is a scalar, then $ku = \left\langle ku_1, ku_2 \right\rangle$

Here is a visual of vector addition. One geometric approach is the Triangle Law and the other is called the Parallelogram Law.

Here is a geometric interpretation of **u-v**.

Example

Let $u=\langle 1,2\rangle$ and $v=\langle 3,1\rangle$, and find each of the following vectors.

- a. **u+v**
- b. **u-v**

c. 2**u**-3**v**

Unit Vectors

A unit vector \mathbf{u} is a vector with magnitude equal to 1. If you have a nonzero vector \mathbf{v} , you can find a unit vector \mathbf{u} that points in the same direction as \mathbf{v} but has magnitude equal to 1.

Simply multiply the vector \mathbf{v} by the reciprocal of its magnitude. (This is just scalar multiplication since the magnitude of a vector is just a scalar.)

$$u = \frac{1}{\|v\|}v$$

Example

Find a unit vector ${\bf u}$ in the direction of ${\bf v}\!=\!\left<7,-3\right>$

Then verify that the result has magnitude equal to 1.

Consider the following unit vectors

$$i = \langle 1, 0 \rangle$$

$$j = \langle 0, 1 \rangle$$

Let's quickly verify that these are indeed unit vectors.

We actually refer to these specific unit vectors as the standard unit vector or standard basis vectors.

We can write any vector \mathbf{v} as a *linear combination* of two standard basis vectors \mathbf{i} and \mathbf{j} .

So in general we can write any vector $\mathbf{v} = \left\langle v_1, v_2 \right\rangle$ as a linear combination in the following way.

$$\mathbf{v} = \mathbf{v}_1 \mathbf{i} + \mathbf{v}_2 \mathbf{j}$$

Example

Let \mathbf{u} be the vector with initial point (-2,6) and terminal point (-8,3). Write \mathbf{u} as a linear combination of the standard unit vectors \mathbf{i} and \mathbf{j} .

Example

Let $\mathbf{u} = \mathbf{i} + \mathbf{j}$ and $\mathbf{v} = 5\mathbf{i} - 3\mathbf{j}$. Find $2\mathbf{u} - 3\mathbf{v}$