Period

- 1. Let vector \mathbf{v} be defined by the initial point (1,3) and the terminal point (2,5).
- a) Write the vector $v = \langle \underline{1}, \underline{2} \rangle$

Slope =
$$\frac{5-3}{2-1} = \frac{2}{1}$$

b) Determine the direction angle of the vector.

2. Let $u = \langle -1,3 \rangle$, $v = \langle 2,4 \rangle$, and $w = \langle 2,-5 \rangle$. Calculate the following.

b)
$$||u-v||$$

c)
$$\mathbf{v} + \mathbf{w}$$

$$2u = (-2,6)$$

 $3v = (6,12)$

$$||u-v|| = \sqrt{-3}, -1$$

2u+3v = <4,18>

3. Use the diagram to sketch the following.

$$a) a + b$$

b)
$$b-a$$

4. Consider the vector v = -4i + 7j. Determine a unit vector \mathbf{u} that is in the same direction as \mathbf{v} .

$$||v|| = \sqrt{16 + 49} = \sqrt{65}$$

$$u = \frac{1}{||v||}v = \frac{-4}{\sqrt{65}}i + \frac{7}{\sqrt{65}}j$$

5. A vector ${\bf a}$ has magnitude $\|{m a}\|=20$ and has direction angle 210° . Write this vector as a linear combination of the unit vectors i and i.

6. A pilot must actually fly due west at a constant speed of 382 mph. There is a head wind of 55 mph blowing in the direction 22° south of east. What direction and speed must the pilot maintain to keep on course due west?

$$V = -382i + 0j = resultant \ vector$$

$$U = 55\cos 338^{0}i + 55\sin 338^{0}j$$

$$V - u = -432.995i + 20.603j + \tan \theta = \frac{20.603}{-432.995}$$
7. Find the tension in each of the wires shown in the diagram.
$$\theta \approx -2.724$$

7. Find the tension in each of the wires shown in the diagram.

$$V = ||v||\cos 55^{\circ}i + ||v||\sin 55^{\circ}j$$

$$U = ||u||\cos 160^{\circ}i + ||u||\sin 160^{\circ}j$$

$$U + V = 0i + 1200j$$

$$||v||\cos 56^{\circ} + ||u||\cos 160^{\circ} = 0 \Rightarrow \text{ solve } \Rightarrow \text{ ||v|| = ||67.4|}$$

$$||v||\sin 50^{\circ} + ||u||\sin ||a0|| = 1200 \Rightarrow \text{ system}$$

$$||u|| = 7|2.52$$

8. Find the dot product of the vectors $\mathbf{c} = \langle 4, -5 \rangle$ and $\mathbf{d} = \langle -4, 3 \rangle$.

$$C \cdot d = 4(-4) + (-5)(3) = -16 - 15 = -31$$

9. Find the angle between the vectors $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$ and $\mathbf{b} = 5\mathbf{i} + 12\mathbf{j}$.

a o b = 1/all ||b|| cos
$$\theta$$
 = 3(5)+4(12) = 15+48=63 θ = cos θ

10. Determine the value of c that will make vectors $\mathbf{v} = \langle 5,7 \rangle$ and $\mathbf{w} = \langle -2,c \rangle$ orthogonal.

orthogonal means that dot product = 0 V: W=0=5(-2)+7(c) 0 = -10 + 70 10 = 70 10 = 70

11. Mr. Carfagna had to pull a washing machine up a 20° ramp on a U Haul truck while moving a friend on Sunday. The washing machine weighed 200 lbs. What force parallel to the incline ramp did Mr. C use to pull the washing machine onto the truck? What was the magnitude of the force perpendicular to the ramp?

$$sin20^{0} = \frac{11ull}{200}$$

$$200sin20^{0} = 11ull$$

$$68.4 = 11ull$$

$$\cos 20^\circ = \frac{1|v|}{200}$$